Marcel Waldvogel<p>TIL: Origami is more powerful than Euclidian Geometry!</p><p>No need to be afraid when Zsuzsanna Dancso explains that Origami can create the shared tangent to two parabolas, something related to construct cubic roots (which Euclid couldn't, only square roots). (And that it can solve cubic equations, wow!)</p><p>But actually, she is just folding paper, only getting to the scary stuff at the very end. Fascinating!</p><p><a href="https://waldvogel.family/tags/Origami" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Origami</span></a> <a href="https://waldvogel.family/tags/Euclid" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Euclid</span></a> <a href="https://waldvogel.family/tags/EuclideanGeometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>EuclideanGeometry</span></a> <a href="https://waldvogel.family/tags/Numberphile" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Numberphile</span></a> <a href="https://waldvogel.family/tags/ZsuzsannaDancso" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ZsuzsannaDancso</span></a> <br><a href="https://www.youtube.com/watch?v=SL2lYcggGpc&list=PLt5AfwLFPxWLGm-EZUKAdx7wad6mjCQsh&index=1" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">youtube.com/watch?v=SL2lYcggGp</span><span class="invisible">c&list=PLt5AfwLFPxWLGm-EZUKAdx7wad6mjCQsh&index=1</span></a></p>