lingo.lol is one of the many independent Mastodon servers you can use to participate in the fediverse.
A place for linguists, philologists, and other lovers of languages.

Server stats:

60
active users

#riemann

0 posts0 participants0 posts today
Pustam | पुस्तम | পুস্তম🇳🇵<p>One of the best things I saw this week: a paper uncovering alien signals in the Riemann Zeta function. April Fools always brings peak creativity. 😅</p><p><a href="https://mathstodon.xyz/tags/Riemann" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Riemann</span></a> <a href="https://mathstodon.xyz/tags/Zeta" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Zeta</span></a> <a href="https://mathstodon.xyz/tags/ZetaFunction" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ZetaFunction</span></a> <a href="https://mathstodon.xyz/tags/RiemanZetaFunction" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RiemanZetaFunction</span></a> <a href="https://mathstodon.xyz/tags/AprilFool" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AprilFool</span></a> <a href="https://mathstodon.xyz/tags/AprilFools" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AprilFools</span></a> <a href="https://mathstodon.xyz/tags/AprilFoolsDay" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AprilFoolsDay</span></a> <a href="https://mathstodon.xyz/tags/Creativity" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Creativity</span></a> <a href="https://mathstodon.xyz/tags/Math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Math</span></a> <a href="https://mathstodon.xyz/tags/Maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Maths</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/PeakCreativity" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PeakCreativity</span></a> <a href="https://mathstodon.xyz/tags/Nerd" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Nerd</span></a> <a href="https://mathstodon.xyz/tags/Nerds" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Nerds</span></a> <a href="https://mathstodon.xyz/tags/Humor" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Humor</span></a> <a href="https://mathstodon.xyz/tags/Humour" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Humour</span></a> <a href="https://mathstodon.xyz/tags/Alien" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Alien</span></a> <a href="https://mathstodon.xyz/tags/AlienSignals" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AlienSignals</span></a></p>
Jochen Fromm<p>Will the toughest problem in <a href="https://fediscience.org/tags/math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>math</span></a> ever be solved? David Whitehouse about the Riemann hypothesis <br><a href="https://www.spectator.co.uk/article/will-the-toughest-problem-in-maths-ever-be-solved/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">spectator.co.uk/article/will-t</span><span class="invisible">he-toughest-problem-in-maths-ever-be-solved/</span></a></p><p>Recently there has been some progress - a proof creates stricter limits on potential exceptions to the famous <a href="https://fediscience.org/tags/Riemann" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Riemann</span></a> hypothesis<br><a href="https://www.quantamagazine.org/sensational-proof-delivers-new-insights-into-prime-numbers-20240715/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">quantamagazine.org/sensational</span><span class="invisible">-proof-delivers-new-insights-into-prime-numbers-20240715/</span></a></p>
ƧƿѦςɛ♏ѦਹѤʞ<p><span class="h-card" translate="no"><a href="https://social.zvavybir.eu/@zvavybir" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>zvavybir</span></a></span> <br>It does diverge. It has no sum.<br>However, the uniquely valued <a href="https://mastodon.social/tags/Riemann" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Riemann</span></a> <a href="https://mastodon.social/tags/ZetaFunction" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ZetaFunction</span></a> can be analytically continued into the left half-plane where we find zeta(-1)=-1/12 (which 'looks like' 1+2+...). <a href="https://mastodon.social/tags/Ces%C3%A0ro" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Cesàro</span></a> <a href="https://mastodon.social/tags/summation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>summation</span></a> will get you part of the way there also, and, as you say, yields the same result; presumably due to some ultimate cosmic logical rightness :-) <br>I very strongly recommend BP's superb exposition of this issue<br><a href="https://www.youtube.com/watch?v=YuIIjLr6vUA" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">youtube.com/watch?v=YuIIjLr6vU</span><span class="invisible">A</span></a><br><a href="https://mastodon.social/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://mastodon.social/tags/AnalyticContinuation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AnalyticContinuation</span></a> <a href="https://mastodon.social/tags/Ramanujan" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Ramanujan</span></a></p>
Pustam | पुस्तम | পুস্তম🇳🇵<p>DOMINATED CONVERGENCE THEOREM<br>Lebesgue's dominated convergence theorem provides sufficient conditions under which pointwise convergence of a sequence of functions implies convergence of the integrals. It's one of the reasons that makes <a href="https://mathstodon.xyz/tags/Lebesgue" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Lebesgue</span></a> integration more powerful than <a href="https://mathstodon.xyz/tags/Riemann" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Riemann</span></a> integration. The theorem an be stated as follows:</p><p>Let \((f_n)\) be a sequence of measurable functions on a measure space \((\mathcal{S},\Sigma,\mu)\). Suppose that \((f_n)\) converges pointwise to a function \(f\) and is dominated by some Lebesgue integrable function \(g\), i.e. \(|f_n(x)|\leq g(x)\ \forall n\) and \(\forall x\in\mathcal{S}\). Then, \(f\) is Lebesgue integrable, and</p><p>\[\displaystyle\lim_{n\to\infty}\int_\mathcal{S}f_n\ \mathrm{d}\mu=\int_\mathcal{S}f\ \mathrm{d}\mu\]<br><a href="https://mathstodon.xyz/tags/ConvergenceTheorem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ConvergenceTheorem</span></a> <a href="https://mathstodon.xyz/tags/Convergence" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Convergence</span></a> <a href="https://mathstodon.xyz/tags/DominatedConvergenceTheorem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DominatedConvergenceTheorem</span></a> <a href="https://mathstodon.xyz/tags/Lebesgue" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Lebesgue</span></a> <a href="https://mathstodon.xyz/tags/MeasurableFunction" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MeasurableFunction</span></a> <a href="https://mathstodon.xyz/tags/LebesgueFunction" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LebesgueFunction</span></a> <a href="https://mathstodon.xyz/tags/LebesgueIntegration" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LebesgueIntegration</span></a> <a href="https://mathstodon.xyz/tags/RiemannIntegration" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RiemannIntegration</span></a> <a href="https://mathstodon.xyz/tags/MeasureSpace" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MeasureSpace</span></a></p>
Jon Awbrey<p><a href="https://mathstodon.xyz/tags/SignRelationalManifolds" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>SignRelationalManifolds</span></a> • 4<br>• <a href="http://inquiryintoinquiry.com/2022/11/05/sign-relational-manifolds-4-2/" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">http://</span><span class="ellipsis">inquiryintoinquiry.com/2022/11</span><span class="invisible">/05/sign-relational-manifolds-4-2/</span></a></p><p>Another set of notes I found on this theme strikes me as getting to the point more quickly and though they read a little rough in places I think it may be worth the effort to fill out their general line of approach.</p><p><a href="https://mathstodon.xyz/tags/RepresentationInvariantOntology" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RepresentationInvariantOntology</span></a></p><p>• <a href="https://web.archive.org/web/20150302021003/http://stderr.org/pipermail/inquiry/2003-April/thread.html#439" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">web.archive.org/web/2015030202</span><span class="invisible">1003/http://stderr.org/pipermail/inquiry/2003-April/thread.html#439</span></a></p><p>• <a href="https://web.archive.org/web/20141220180218/http://stderr.org/pipermail/inquiry/2003-April/000439.html" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">web.archive.org/web/2014122018</span><span class="invisible">0218/http://stderr.org/pipermail/inquiry/2003-April/000439.html</span></a></p><p>• <a href="https://web.archive.org/web/20141220180220/http://stderr.org/pipermail/inquiry/2003-April/000440.html" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">web.archive.org/web/2014122018</span><span class="invisible">0220/http://stderr.org/pipermail/inquiry/2003-April/000440.html</span></a></p><p><a href="https://mathstodon.xyz/tags/Peirce" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Peirce</span></a> <a href="https://mathstodon.xyz/tags/Semiotics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Semiotics</span></a> <a href="https://mathstodon.xyz/tags/SignRelations" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>SignRelations</span></a><br><a href="https://mathstodon.xyz/tags/Riemann" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Riemann</span></a> <a href="https://mathstodon.xyz/tags/SergeLang" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>SergeLang</span></a> <a href="https://mathstodon.xyz/tags/Manifolds" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Manifolds</span></a> <br><a href="https://mathstodon.xyz/tags/DifferentialGeometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DifferentialGeometry</span></a> <a href="https://mathstodon.xyz/tags/DifferentialLogic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DifferentialLogic</span></a></p>
Jon Awbrey<p><a href="https://mathstodon.xyz/tags/Peirce" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Peirce</span></a> <a href="https://mathstodon.xyz/tags/Kant" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Kant</span></a> <a href="https://mathstodon.xyz/tags/Riemann" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Riemann</span></a><br><a href="https://mathstodon.xyz/tags/SignRelationalManifolds" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>SignRelationalManifolds</span></a><br><a href="https://inquiryintoinquiry.com/2022/11/01/sign-relational-manifolds-2-2/" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2022/11</span><span class="invisible">/01/sign-relational-manifolds-2-2/</span></a></p><p>Applications of <a href="https://mathstodon.xyz/tags/Manifolds" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Manifolds</span></a> are illustrated by the following excerpts from Doolin &amp; Martin's Introduction to <a href="https://mathstodon.xyz/tags/DifferentialGeometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DifferentialGeometry</span></a> for Engineers.</p><p><a href="https://web.archive.org/web/20110612002240/http://suo.ieee.org/ontology/thrd28.html#04056" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">web.archive.org/web/2011061200</span><span class="invisible">2240/http://suo.ieee.org/ontology/thrd28.html#04056</span></a></p><p>Manifolds came up in connection with <a href="https://mathstodon.xyz/tags/Ontology" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Ontology</span></a> and <a href="https://mathstodon.xyz/tags/Semiotics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Semiotics</span></a> due to the issues of <a href="https://mathstodon.xyz/tags/Perspectivity" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Perspectivity</span></a>, <a href="https://mathstodon.xyz/tags/OntologicalRelativity" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OntologicalRelativity</span></a>, and <a href="https://mathstodon.xyz/tags/Interoperability" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Interoperability</span></a> among multiple ontologies. As I see it, those are the very sorts of problems manifolds were invented to handle.</p>