lingo.lol is one of the many independent Mastodon servers you can use to participate in the fediverse.
A place for linguists, philologists, and other lovers of languages.

Server stats:

64
active users

#fluiddynamics

7 posts7 participants0 posts today
Nicole Sharp<p><strong>Flying Foxes</strong></p><p>A sweltering day in India brought out the local giant fruit bats (also called <a href="https://en.wikipedia.org/wiki/Indian_flying_fox" rel="nofollow noopener noreferrer" target="_blank">Indian flying foxes</a>) to keep cool in the river. Normally nocturnal, they made a rare daytime appearance to beat the heat. Wildlife photographer Hardik Shelat was lucky enough to catch these awesome images of the bats in flight. True to their name, the animals have wingspans ranging from 1.2 to 1.5 meters, which should give them some impressive lift, even when gliding down near the water. (Image credit: <a href="https://www.instagram.com/hardik_shelat_photography/?hl=en" rel="nofollow noopener noreferrer" target="_blank">H. Shelat</a>; via <a href="https://www.thisiscolossal.com/2025/06/hardik-shelat-flying-foxes/?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Colossal</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/bats/" target="_blank">#bats</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biology/" target="_blank">#biology</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flapping-flight/" target="_blank">#flappingFlight</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/gliding/" target="_blank">#gliding</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Soh Kam Yung<p>"We discovered that the flickering snake tongue generates two pairs of small, swirling masses of air, or vortices, that act like tiny fans, pulling odors in from each side and jetting them directly into the path of each tongue tip."</p><p><a href="https://theconversation.com/smelling-in-stereo-the-real-reason-snakes-have-flicking-forked-tongues-142363" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">theconversation.com/smelling-i</span><span class="invisible">n-stereo-the-real-reason-snakes-have-flicking-forked-tongues-142363</span></a></p><p><a href="https://mstdn.io/tags/Snakes" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Snakes</span></a> <a href="https://mstdn.io/tags/Biology" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Biology</span></a> <a href="https://mstdn.io/tags/Smelling" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Smelling</span></a> <a href="https://mstdn.io/tags/Nature" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Nature</span></a> <a href="https://mstdn.io/tags/Tongues" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Tongues</span></a> <a href="https://mstdn.io/tags/FluidDynamics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FluidDynamics</span></a></p>
Nicole Sharp<p><strong>Listening for Pollinators</strong></p><p>Can plants recognize the sound of their pollinators? That’s the question behind this <a href="https://www.eurekalert.org/news-releases/1083951" rel="nofollow noopener noreferrer" target="_blank">recently presented</a> acoustic research. As bees and other pollinators hover, land, and take-off, their bodies buzz in distinctive ways. Researchers recorded these subtle sounds from a <em>Rhodanthidium sticticum&nbsp;</em>bee and played them back to snapdragons, which rely on that insect. They found that the snapdragons responded with an increase in sugar and nectar volume; the plants even altered their gene expression governing sugar transport and nectar production. The researchers suspect that the plants evolved this strategy to attract their most efficient pollinators and thereby increase their own reproductive success. (Image credit: <a href="https://unsplash.com/photos/a-vase-filled-with-purple-flowers-on-top-of-a-table-bA5jzbGtEWw" rel="nofollow noopener noreferrer" target="_blank">E. Wilcox</a>; research credit: <a href="https://www.eurekalert.org/news-releases/1083951" rel="nofollow noopener noreferrer" target="_blank">F. Barbero et al.</a>; via <a href="https://www.popsci.com/environment/plants-hear-pollinators/?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">PopSci</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/acoustics/" target="_blank">#acoustics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biology/" target="_blank">#biology</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/insects/" target="_blank">#insects</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/plants/" target="_blank">#plants</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/pollination/" target="_blank">#pollination</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Rolling Down Soft Surfaces</strong></p><p>Place a rigid ball on a hard vertical surface, and it will free fall. Stick a liquid drop there, and it will slide down. But <a href="https://doi.org/10.1039/D4SM01490A" rel="nofollow noopener noreferrer" target="_blank">researchers discovered</a> that with a soft sphere and a soft surface, it’s possible to roll down a vertical wall. The effect requires just the right level of squishiness for both the wall and sphere, but when conditions are right, the 1-millimeter radius sphere rolls (with a little slipping) down the wall. </p><p>Rolling requires torque, something that’s usually lacking on a vertical surface. But the team found that their soft spheres got the torque needed to roll from their asymmetric contact with the surface. More of the sphere contacted above its centerline than below it. The researchers compared the way the sphere contacted the surface to a crack opening (at the back of the sphere) and a crack closing (at the front of the sphere). That asymmetry creates just enough torque to roll the sphere slowly. The team hopes their discovery opens up new possibilities for soft robots to climb and descend vertical surfaces. (Image and research credit: <a href="https://doi.org/10.1039/D4SM01490A" rel="nofollow noopener noreferrer" target="_blank">S. Mitra et al.</a>; via <a href="https://gizmodo.com/cool-physics-feat-makes-a-sphere-roll-down-a-vertical-wall-2000610612?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Gizmodo</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/adhesion/" target="_blank">#adhesion</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/slip/" target="_blank">#slip</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/soft-matter/" target="_blank">#softMatter</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/solid-mechanics/" target="_blank">#solidMechanics</a></p>
Pustam | पुस्तम | পুস্তম🇳🇵<p>Imagine being a brilliant physicist/mathematician and still avoiding the most important problems because your career depends on publishing frequent papers, not solving the biggest mysteries in the world.</p><p>That's why you can't do things like this in academia.</p><p><a href="https://english.elpais.com/science-tech/2025-06-24/spanish-mathematician-javier-gomez-serrano-and-google-deepmind-team-up-to-solve-the-navier-stokes-million-dollar-problem.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">english.elpais.com/science-tec</span><span class="invisible">h/2025-06-24/spanish-mathematician-javier-gomez-serrano-and-google-deepmind-team-up-to-solve-the-navier-stokes-million-dollar-problem.html</span></a></p><p><a href="https://mathstodon.xyz/tags/NavierStokes" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NavierStokes</span></a> <a href="https://mathstodon.xyz/tags/GoogleDeepMind" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GoogleDeepMind</span></a> <a href="https://mathstodon.xyz/tags/DeepMind" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DeepMind</span></a> <a href="https://mathstodon.xyz/tags/MillenniumProblems" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MillenniumProblems</span></a> <a href="https://mathstodon.xyz/tags/Existence" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Existence</span></a> <a href="https://mathstodon.xyz/tags/Smoothness" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Smoothness</span></a> <a href="https://mathstodon.xyz/tags/Fluid" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Fluid</span></a> <a href="https://mathstodon.xyz/tags/FluidDynamics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FluidDynamics</span></a> <a href="https://mathstodon.xyz/tags/Turbulence" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Turbulence</span></a> <a href="https://mathstodon.xyz/tags/Dynamics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Dynamics</span></a> <a href="https://mathstodon.xyz/tags/TurbulentFlows" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TurbulentFlows</span></a> <a href="https://mathstodon.xyz/tags/Research" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Research</span></a> <a href="https://mathstodon.xyz/tags/Engineering" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Engineering</span></a> <a href="https://mathstodon.xyz/tags/Physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Physics</span></a> <a href="https://mathstodon.xyz/tags/Math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Math</span></a> <a href="https://mathstodon.xyz/tags/Maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Maths</span></a> <a href="https://mathstodon.xyz/tags/Mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Mathematics</span></a> <a href="https://mathstodon.xyz/tags/UnsolvedProblems" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>UnsolvedProblems</span></a> <a href="https://mathstodon.xyz/tags/BiggestMystery" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>BiggestMystery</span></a> <a href="https://mathstodon.xyz/tags/Flows" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Flows</span></a> <a href="https://mathstodon.xyz/tags/MillionDollarProblem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MillionDollarProblem</span></a></p>
Nicole Sharp<p><strong>Seeing the Sun’s South Pole For the First Time</strong></p><p>The ESA-led Solar Orbiter recently used a Venus flyby to lift itself out of the <a href="https://en.wikipedia.org/wiki/Ecliptic" rel="nofollow noopener noreferrer" target="_blank">ecliptic</a> — the equatorial plane of the Sun where Earth sits. This maneuver offers us the first-ever glimpse of the Sun’s south pole, a region that’s not visible from the ecliptic plane. A close-up view of plasma rising off the pole is shown above, and the video below has even more. </p><p>Solar Orbiter will get even better views of the Sun’s poles in the coming months, perfect for watching what goes on as the Sun’s 11-year-solar-cycle approaches its maximum. During this time, the Sun’s magnetic poles will flip their polarity; already Solar Orbiter’s instruments show that the south pole contains pockets of both positive and negative magnetic polarity — a messy state that’s likely a precursor to the big flip. (Image and video credit: <a href="https://www.esa.int/Science_Exploration/Space_Science/Solar_Orbiter/Solar_Orbiter_gets_world-first_views_of_the_Sun_s_poles" rel="nofollow noopener noreferrer" target="_blank">ESA &amp; NASA/Solar Orbiter/EUI Team, D. Berghmans (ROB) &amp; ESA/Royal Observatory of Belgium</a>; via <a href="https://gizmodo.com/solar-orbiter-captures-first-clear-views-of-suns-south-pole-and-its-a-hot-mess-2000614511?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Gizmodo</a>)</p><p><a href="https://www.youtube.com/watch?v=TU4DcDgaMM0" rel="nofollow noopener noreferrer" target="_blank">https://www.youtube.com/watch?v=TU4DcDgaMM0</a></p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/magnetohydrodynamics/" target="_blank">#magnetohydrodynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/plasma/" target="_blank">#plasma</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/solar-dynamics/" target="_blank">#solarDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/sun/" target="_blank">#sun</a></p>
Nicole Sharp<p><strong>Io’s Missing Magma Ocean</strong></p><p>In the late 1970s, scientists conjectured that Io was likely a volcanic world, heated by <a href="https://en.wikipedia.org/wiki/Tidal_heating" rel="nofollow noopener noreferrer" target="_blank">tidal forces</a> from Jupiter that squeeze it along its elliptical orbit. Only months later, images from Voyager 1’s flyby confirmed the moon’s volcanism. Magnetometer data from Galileo’s later flyby suggested that tidal heating had created a shallow magma ocean that powered the moon’s volcanic activity. But <a href="https://doi.org/10.1038/s41586-024-08442-5" rel="nofollow noopener noreferrer" target="_blank">newly analyzed data</a> from Juno’s flyby shows that Io doesn’t have a magma ocean after all.</p><p>The new flyby used radio transmission data to measure any little wobbles that Io caused by tugging Juno off its expected course. The team expected a magma ocean to cause plenty of distortions for the spacecraft, but the effect was much slighter than expected. Their conclusion? Io has no magma ocean lurking under its crust. The results don’t preclude a deeper magma ocean, but at what point do you distinguish a magma ocean from a body’s liquid core?</p><p>Instead, scientists are now exploring the possibility that Io’s magma shoots up from much smaller pockets of magma rather than one enormous, shared source. (Image credit: NASA/JPL/USGS; research credit: <a href="https://doi.org/10.1038/s41586-024-08442-5" rel="nofollow noopener noreferrer" target="_blank">R. Park et al.</a>; see also <a href="https://www.quantamagazine.org/whats-going-on-inside-io-jupiters-volcanic-moon-20250425/?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Quanta</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/io/" target="_blank">#Io</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/magma/" target="_blank">#magma</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/planetary-science/" target="_blank">#planetaryScience</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/subsurface-oceans/" target="_blank">#subsurfaceOceans</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/tidal-heating/" target="_blank">#tidalHeating</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/volcano/" target="_blank">#volcano</a></p>
Nicole Sharp<p><strong>“Droplet on a Plucked Wire”</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/drop_string1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/drop_string2.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/drop_string3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>What happens to a droplet hanging on a wire when the wire gets plucked? That’s the fundamental question behind this video, which shows the effects of wire speed, viscosity, and viscoelasticity on a drop’s detachment. With lovely high-speed video and close-up views, you get to appreciate even subtle differences between each drop. Capillary waves, viscoelastic waves, and Plateau-Rayleigh instabilities abound! (Video and image credit: <a href="https://doi.org/10.1103/APS.DFD.2024.GFM.V2691248" rel="nofollow noopener noreferrer" target="_blank">D. Maity et al.</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/2024gofm/" target="_blank">#2024gofm</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/droplets/" target="_blank">#droplets</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/viscoelasticity/" target="_blank">#viscoelasticity</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/viscous-flow/" target="_blank">#viscousFlow</a></p>
Nicole Sharp<p><strong>“C R Y S T A L S”</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/crystals3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/crystals2.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/crystals1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/crystals5.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/crystals4.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/crystals6.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>In “C R Y S T A L S,” filmmaker Thomas Blanchard captures the slow, inexorable growth of potassium phosphate crystals. He took over 150,000 images — one per minute — to document the way crystals formed as the originally transparent liquid evaporated. Some crystals branch into fractals. Others bulge outward like a condensing cloud or a sprouting mushroom. (Video and image credit: <a href="https://thomas-blanchard.com" rel="nofollow noopener noreferrer" target="_blank">T. Blanchard</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/crystal-growth/" target="_blank">#crystalGrowth</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/evaporation/" target="_blank">#evaporation</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/timelapse/" target="_blank">#timelapse</a></p>
Nicole Sharp<p><strong>Stunning Interstellar Turbulence</strong></p><p>The space between stars, known as the interstellar medium, may be sparse, but it is far from empty. Gas, dust, and plasma in this region forms compressible magnetized turbulence, with some pockets moving supersonically and others moving slower than sound. The flows here influence how stars form, how cosmic rays spread, and where metals and other planetary building blocks wind up. To better understand the physics of this region, <a href="https://doi.org/10.1038/s41550-025-02551-5" rel="nofollow noopener noreferrer" target="_blank">researchers built</a> a numerical simulation with over 1,000 billion grid points, creating an unprecedentedly detailed picture of this turbulence.</p><p>The images above are two-dimensional slices from the full 3D simulation. The upper image shows the current density while the lower one shows mass density. On the right side of the images, magnetic field lines are superimposed in white. The results are gorgeous. Can you imagine a fly-through video? (Image and research credit: <a href="https://doi.org/10.1038/s41550-025-02551-5" rel="nofollow noopener noreferrer" target="_blank">J. Beattie et al.</a>; via <a href="https://gizmodo.com/most-detailed-simulation-of-magnetic-turbulence-in-space-is-surprisingly-beautiful-2000606528?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Gizmodo</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/astrophysics/" target="_blank">#astrophysics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/compressibility/" target="_blank">#compressibility</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/magnetohydrodynamics/" target="_blank">#magnetohydrodynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/numerical-simulation/" target="_blank">#numericalSimulation</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/turbulence/" target="_blank">#turbulence</a></p>
Nicole Sharp<p><strong>Penguin Poo Seeds Antarctic Clouds</strong></p><p>Forming clouds requires more than just water vapor; every droplet in a cloud forms around a tiny aerosol particle that serves as a seed that vapor can condense onto. Without these aerosols, there are no clouds. In most regions of the world, aerosols are plentiful — produced by vegetation, dust, sea salt, and other sources. But in the Antarctic, aerosol sources are few. But a <a href="https://doi.org/10.1038/s43247-025-02312-2" rel="nofollow noopener noreferrer" target="_blank">new study shows</a> that penguins help create aerosols with their feces.</p><p>Penguin feces is ammonia-rich, and that ammonia, when combined with sulfur compounds from marine phytoplankton, triggers chemistry that releases new aerosol particles. The researchers measured ammonia carried on the wind from nearby penguin colonies and found that the birds are a large ammonia source, producing 100 to 1000 times the region’s baseline ammonia levels. In combination with another ingredient in penguin guano, the researchers found the penguins boosted aerosol production 10,000-fold. That means penguins can actually influence their environment, helping to create clouds that keep Antarctica cooler. (Image credit: <a href="https://unsplash.com/photos/group-of-penguins-bZvdX5Ysm44" rel="nofollow noopener noreferrer" target="_blank">H. Neufeld</a>; research credit: <a href="https://doi.org/10.1038/s43247-025-02312-2" rel="nofollow noopener noreferrer" target="_blank">M. Boyer et al.</a>; via <a href="https://eos.org/articles/pungent-penguin-poop-produces-polar-cloud-particles?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Eos</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/aerosols/" target="_blank">#aerosols</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biology/" target="_blank">#biology</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/chemistry/" target="_blank">#chemistry</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/cloud-formation/" target="_blank">#cloudFormation</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/condensation/" target="_blank">#condensation</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/penguins/" target="_blank">#penguins</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Artificial Reoxygenation</strong></p><p>Phytoplankton blooms have blossomed in coastal waters around the world, driven by phosphorus and nitrogen in agricultural run-off. These large algal blooms deplete oxygen in the water, creating dead zones where fish and other marine life cannot survive. Typically, oxygen makes its way into the ocean at the surface, where breaking waves trap air in bubbles that, when tiny enough, dissolve their oxygen into the water. But this process mainly helps surface-level waters, and without means to circulate oxygen-rich water down to the depths, the low-oxygen state persists.</p><p><a href="https://eos.org/features/could-bubbling-oxygen-revitalize-dying-coastal-seas?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Artificial reoxygenation</a> is a possible countermeasure. Either by bubbling oxygen directly into deeper waters or by pumping surface-level water downward, we could increase oxygen levels in the water column. So far, though, artificial reoxygenation’s success has been limited; tests in a few bays and estuaries show that it’s possible to reoxygenate the water, but the effects only last as long as the artificial mechanism remains active. Stop the pumps and bubblers and the water will revert to its low-oxygen state in just a day. Even so, the measures may be worthwhile on a temporary basis in some places while we adjust agricultural practices and try to mitigate warming. (Image credit: <a href="https://www.esa.int/ESA_Multimedia/Images/2019/12/Baltic_blooms" rel="nofollow noopener noreferrer" target="_blank">Copernicus Sentinel/ESA</a>; via <a href="https://eos.org/features/could-bubbling-oxygen-revitalize-dying-coastal-seas?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Eos</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biology/" target="_blank">#biology</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/ocean/" target="_blank">#ocean</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/oceanography/" target="_blank">#oceanography</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/phytoplankton/" target="_blank">#phytoplankton</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Melting in a Spin</strong></p><p>The world’s largest iceberg A23a is spinning in a Taylor column off the Antarctic coast. This poster looks at a miniature version of the problem with a fluorescein-dyed ice slab slowly melting in water. On the left, the model iceberg is melting without rotating. The melt water stays close to the base until it forms a narrow, sinking plume. In the center, the ice rotates, which moves the detachment point outward. The wider plume is turbulent compared to the narrow, non-rotating one. At higher rotation speeds (right), the plume is even wider and more turbulent, causing the fastest melting rate. (Image credit: <a href="https://doi.org/10.1103/APS.DFD.2024.GFM.P2676604" rel="nofollow noopener noreferrer" target="_blank">K. Perry and S. Morris</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/2024gfm/" target="_blank">#2024gfm</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/iceberg/" target="_blank">#iceberg</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/melting/" target="_blank">#melting</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/rotation/" target="_blank">#rotation</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Flamingo Fluid Dynamics, Part 1: A Head in the Game</strong></p><p>Flamingos are unequivocally odd-looking birds with their long skinny legs, sinuous necks, and bent L-shaped beaks. They are filter-feeders, but a <a href="https://doi.org/10.1073/pnas.2503495122" rel="nofollow noopener noreferrer" target="_blank">new study shows</a> that they are far from passive wanderers looking for easy prey in shallow waters. Instead, flamingos are active hunters, using fluid dynamics to draw out and trap the quick-moving invertebrates they feed on. In today’s post, I’ll focus on how flamingos use their heads and beaks; next time, we’ll take a look at what they do with their feet.</p> <p>Feeding flamingos often bob their heads out of the water. This, it turns out, is not indecision, but a strategy. Lifting its flat upper forebeak from near the bottom of a pool creates suction. That suction creates a tornado-like vortex that helps draw food particles and prey from the muddy sediment.</p> <p>When feeding, flamingos will also open and close their mandibles about 12 times a second in a behavior known as chattering. This movement, as seen in the video above, creates a flow that draws particles — and even active swimmers! — toward its beak at about seven centimeters a second. </p> <p>Staying near the surface won’t keep prey safe from flamingos, either. In slow-flowing water, the birds will set the upper surface of their forebeak on the water, tip pointed downstream. This seems counterintuitive, until you see flow visualization around the bird’s head, as above. Von Karman vortices stream off the flamingo’s head, which creates a slow-moving recirculation zone right by the tip of the bird’s beak. Brine shrimp eggs get caught in these zones, delivering themselves right to the flamingo’s mouth.</p><p>Clearly, the flamingo is a pretty sophisticated hunter! It’s actively drawing out and trapping prey with clever fluid dynamics. Tomorrow we’ll take a look at some of its other tricks. (Image credit: top – <a href="https://unsplash.com/photos/pink-flamingo-bvpWQI8Xb0k" rel="nofollow noopener noreferrer" target="_blank">G. Cessati</a>, others – <a href="https://doi.org/10.1073/pnas.2503495122" rel="nofollow noopener noreferrer" target="_blank">V. Ortega-Jimenez et al.</a>; research credit: <a href="https://doi.org/10.1073/pnas.2503495122" rel="nofollow noopener noreferrer" target="_blank">V. Ortega-Jimenez et al.</a>; submitted by Soh KY)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biology/" target="_blank">#biology</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/filter-feeding/" target="_blank">#filterFeeding</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flamingo/" target="_blank">#flamingo</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/suction/" target="_blank">#suction</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/vortices/" target="_blank">#vortices</a></p>
Nicole Sharp<p><strong>How Insects Fly in the Rain</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/superhydro1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/superhydro2.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/superhydro3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>Getting caught in the rain is annoying for us but has the potential to be deadly for smaller creatures like insects. So how do they survive a deluge? First, they don’t resist a raindrop, and second, they have the kinds of surfaces water likes to roll or bounce off. The key to this second ability is micro- and nanoscale roughness. Surfaces like butterfly wings, water strider feet, and leaf surfaces contain lots of tiny gaps where air gets caught. Water’s cohesion — its attraction to itself — is large enough that water drops won’t squeeze into these tiny spaces. Instead, like the ball it resembles, a water drop slides or bounces away. (Video and image credit: Be Smart)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biology/" target="_blank">#biology</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/butterfly/" target="_blank">#butterfly</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/cohesion/" target="_blank">#cohesion</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/droplets/" target="_blank">#droplets</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/hydrophobic/" target="_blank">#hydrophobic</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/insects/" target="_blank">#insects</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/superhydrophobic/" target="_blank">#superhydrophobic</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/surface-roughness/" target="_blank">#surfaceRoughness</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/surface-tension/" target="_blank">#surfaceTension</a></p>
Nicole Sharp<p><strong>Whale Migration Carries Nutrients</strong></p><p>When it comes to the movement of nutrients in the ocean, we think of run-off from rivers, upwelling along coasts, and convective currents. We don’t typically think about animal migrations, but a <a href="https://doi.org/10.1038/s41467-025-56123-2" rel="nofollow noopener noreferrer" target="_blank">new study</a> of baleen whales (including species like humpbacks and right whales) suggests that these massive mammals provide a small but critical spreading service.</p><p>These whales feed in cold, nutrient-rich waters, like those in the Arctic, then travel thousands of kilometers to warm but nutrient-poor tropical waters to birth and raise calves. During that time, mothers do not hunt or eat; they live off their fat stores, which they also use to make milk for their offspring. Although they’re not eating during this time, they do still urinate, and it’s this activity that, according to researchers, adds some 3,000 tons of critical nitrogen to these areas. Since nitrogen is often a limited resource in these tropical waters, the whales’ urine may act like a fertilizer shipment for other species in their breeding grounds. (Image credit: <a href="https://unsplash.com/photos/a-humpback-whale-swims-under-the-water-WeUIHNHbs6o" rel="nofollow noopener noreferrer" target="_blank">C. Le Duc</a>; research credit: <a href="https://doi.org/10.1038/s41467-025-56123-2" rel="nofollow noopener noreferrer" target="_blank">J. Roman et al.</a>; via <a href="https://doi.org/10.1029/2025EO250171" rel="nofollow noopener noreferrer" target="_blank">Eos</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biology/" target="_blank">#biology</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/nutrient-transport/" target="_blank">#nutrientTransport</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/whales/" target="_blank">#whales</a></p>
Prof. R. I. Sujith<p>Great to host Dr. Anagha Madhusudanan (IISc Bangalore) INSPIRE faculty. She presented her work on Navier-Stokes-based linear models for intermittent &amp; viscosity-stratified flows.<br> Wishing her all the best!<br> <a href="https://mastodon.social/tags/FluidDynamics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FluidDynamics</span></a> <a href="https://mastodon.social/tags/Research" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Research</span></a> <a href="https://mastodon.social/tags/IITMadras" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>IITMadras</span></a> <a href="https://mastodon.social/tags/professor" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>professor</span></a> <a href="https://mastodon.social/tags/Academia" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Academia</span></a> <a href="https://mastodon.social/tags/Aerospace" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Aerospace</span></a> <a href="https://mastodon.social/tags/IISc" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>IISc</span></a></p>
Nicole Sharp<p><strong>Tracking Insects in Flight</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/flight_track1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/flight_track2.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/flight_track3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>Insects are masters of a challenging flight regime; their agility, stability, and control far outstrip anything we’ve built at their size. But to even understand how they accomplish this, researchers must manage to capture those maneuvers in the first place. Insects don’t stay in one small area, which is what the typical fixed camera motion capture set-up requires. Instead, one group of researchers has <a href="https://doi.org/10.1126/scirobotics.adm7689" rel="nofollow noopener noreferrer" target="_blank">designed a system</a> with a moveable mirror that tracks an insect’s motion in real-time, ensuring that the camera stays fixed on the insect even as it traverses a room or — for the drone-mounted version — a field. </p><p>Real-time motion tracking means that researchers can better capture detailed footage of the insect’s maneuvers in a lab environment, or they can head into the field to follow insects in the wild. Imagine tracking individual pollinators through a full day of gathering or watching how a bumblebee responds to getting hit by a raindrop mid-flight. (Video and image credit: Science; research credit: <a href="https://doi.org/10.1126/scirobotics.adm7689" rel="nofollow noopener noreferrer" target="_blank">T. Vo-Doan et al.</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biology/" target="_blank">#biology</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flapping-flight/" target="_blank">#flappingFlight</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/insect-flight/" target="_blank">#insectFlight</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Interstellar Jets</strong></p><p>This JWST image shows a couple of <a href="https://en.wikipedia.org/wiki/Herbig%E2%80%93Haro_object" rel="nofollow noopener noreferrer" target="_blank">Herbig-Hero objects</a>, seen in infrared. These bright objects form when jets of fast-moving energetic particles are expelled from the poles of a newborn star. Those particles hit pockets of gas and dust, forming glowing, hot shock waves like those seen here in red. The star that birthed the object is out of view to the lower-right. The bright blue light surrounded by red spirals that sits near the tip of the shock waves is actually a distant spiral galaxy that happens to be aligned with our viewpoint. (Image credit: NASA/ESA/CSA/STScI/JWST; via <a href="https://apod.nasa.gov/apod/ap250409.html?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">APOD</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/astrophysics/" target="_blank">#astrophysics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/jets/" target="_blank">#jets</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/shockwave/" target="_blank">#shockwave</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/stellar-evolution/" target="_blank">#stellarEvolution</a></p>
Nicole Sharp<p><strong>Inside Hail Formation</strong></p><p>Conventional wisdom suggests that hailstones form over the course of repeated trips up and down through a storm, but a <a href="https://doi.org/10.1007/s00376-024-4211-x" rel="nofollow noopener noreferrer" target="_blank">new study suggests</a> that formation method is less common than assumed. Researchers studied the isotope signatures in the layers of 27 hailstones to work out each stone’s formation history. They found that most hailstones (N = 16) grew without any reversal in direction. Another 7 only saw a single period when upwinds lifted them, and only 1 of the hailstones had cycled down-and-up more than once. They did find, however, that hailstones larger than 25mm (1 inch) in diameter had at least one period of growth during lifting.</p><p>So smaller hailstones likely don’t cycle up and down in a storm, but the largest (and most destructive) hailstones will climb at least once before their final descent. (Image credit: <a href="https://unsplash.com/photos/a-close-up-of-white-flowers-wvbsS58PoNA" rel="nofollow noopener noreferrer" target="_blank">D. Trinks</a>; research credit: <a href="https://doi.org/10.1007/s00376-024-4211-x" rel="nofollow noopener noreferrer" target="_blank">X. Lin et al.</a>; via <a href="https://gizmodo.com/hail-doesnt-form-the-way-you-think-scientists-say-2000589938?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Gizmodo</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/atmospheric-science/" target="_blank">#atmosphericScience</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/ice-formation/" target="_blank">#iceFormation</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/meteorology/" target="_blank">#meteorology</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/thunderstorm/" target="_blank">#thunderstorm</a></p>