lingo.lol is one of the many independent Mastodon servers you can use to participate in the fediverse.
A place for linguists, philologists, and other lovers of languages.

Server stats:

61
active users

#oscillators

0 posts0 participants0 posts today
Alessandro Torcini<p>Neuronal dynamics can be <a href="https://mastodon.social/tags/balanced" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>balanced</span></a><br>without the need of strong external currents, as usually assumed, here with A. Politi we explain how this can work thanks to <a href="https://mastodon.social/tags/short" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>short</span></a> term <a href="https://mastodon.social/tags/depression" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>depression</span></a> (open access article 2024)</p><p><a href="https://mastodon.social/tags/neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuroscience</span></a> <a href="https://mastodon.social/tags/computationalneuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computationalneuroscience</span></a> <a href="https://mastodon.social/tags/balance" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>balance</span></a> <a href="https://mastodon.social/tags/neuralnetwork" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuralnetwork</span></a> <a href="https://mastodon.social/tags/oscillators" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>oscillators</span></a> </p><p><a href="https://pubs.aip.org/aip/cha/article/34/4/041102/3283544/A-robust-balancing-mechanism-for-spiking-neural" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">pubs.aip.org/aip/cha/article/3</span><span class="invisible">4/4/041102/3283544/A-robust-balancing-mechanism-for-spiking-neural</span></a></p>
Victor Buendía<p>If you like <a href="https://fediscience.org/tags/dynamicalsystems" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dynamicalsystems</span></a> , <a href="https://fediscience.org/tags/oscillators" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>oscillators</span></a> and <a href="https://fediscience.org/tags/synchronization" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>synchronization</span></a>, do not miss the latest preprint by Iván León and Hiroya Nakao: <a href="https://arxiv.org/abs/2308.02105" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="">arxiv.org/abs/2308.02105</span><span class="invisible"></span></a> Here they present a method to approximate a limit cycle through an expansion of the phase response curve, which seems to be very general. </p><p>I asked Iván a pair of years ago if one could do something like this, because I was interested too. Great to know he got a nice solution to the problem!</p>