lingo.lol is one of the many independent Mastodon servers you can use to participate in the fediverse.
A place for linguists, philologists, and other lovers of languages.

Server stats:

67
active users

#protists

1 post1 participant0 posts today
Lukas VFN 🇪🇺<p>Sugars from the ocean are responsible for a large part of the ice nuclei over southern hemisphere <a href="https://phys.org/news/2025-07-sugars-salty-ocean-responsible-large.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">phys.org/news/2025-07-sugars-s</span><span class="invisible">alty-ocean-responsible-large.html</span></a> Paper by Susan Hartmann et al.: <a href="https://pubs.acs.org/doi/10.1021/acs.est.4c08014" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">pubs.acs.org/doi/10.1021/acs.e</span><span class="invisible">st.4c08014</span></a></p><p>"ice-forming molecules (affecting cloud formation) produced by <a href="https://scholar.social/tags/fungi" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fungi</span></a> &amp; <a href="https://scholar.social/tags/protists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>protists</span></a> in seawater can enter the atmosphere... there was a lack of knowledge about the chemical identity of these molecules... polysaccharides could be the missing piece of the puzzle"</p>
Frank Aylward<p>Giant viruses integrate into the genomes of money protists. Our latest study adds the model protist Euglena to the list</p><p>"Giant endogenous viral elements in the genome of the model protist Euglena gracilis reveal past interactions with giant viruses"</p><p><a href="https://www.biorxiv.org/content/10.1101/2025.04.23.650285v1" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">biorxiv.org/content/10.1101/20</span><span class="invisible">25.04.23.650285v1</span></a></p><p><a href="https://genomic.social/tags/viruses" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>viruses</span></a> <a href="https://genomic.social/tags/protists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>protists</span></a> <a href="https://genomic.social/tags/microbiology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>microbiology</span></a> <a href="https://genomic.social/tags/genomics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>genomics</span></a></p>
Lukas VFN 🇪🇺<p>After 7,000 years without light and oxygen in <a href="https://scholar.social/tags/BalticSea" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>BalticSea</span></a> mud, researchers bring prehistoric <a href="https://scholar.social/tags/algae" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algae</span></a> back to life <a href="https://phys.org/news/2025-03-years-oxygen-baltic-sea-mud.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">phys.org/news/2025-03-years-ox</span><span class="invisible">ygen-baltic-sea-mud.html</span></a></p><p>Resurrection of a <a href="https://scholar.social/tags/diatom" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>diatom</span></a> after 7000 years from anoxic Baltic Sea sediment: Sarah Bolius et al. <a href="https://academic.oup.com/ismej/article/19/1/wrae252/7942337" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">academic.oup.com/ismej/article</span><span class="invisible">/19/1/wrae252/7942337</span></a></p><p>"Such deposits are like a time capsule containing valuable information about past ecosystems and the inhabiting biological communities, their population development and genetic changes"</p><p><a href="https://scholar.social/tags/Protists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Protists</span></a> <a href="https://scholar.social/tags/Diatoms" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Diatoms</span></a> <a href="https://scholar.social/tags/Microbes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Microbes</span></a></p>
ISEP<p><a href="https://mstdn.science/tags/ISEPpapers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ISEPpapers</span></a> 26: October 2024 to March 2025 <a href="https://www.isep-protists.com/post/iseppapers-26" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">isep-protists.com/post/iseppap</span><span class="invisible">ers-26</span></a></p><p>Your twenty-sixth digest of papers and preprints published by members of the International Society for Evolutionary Protistology is here!</p><p><a href="https://mstdn.science/tags/Protists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Protists</span></a> <a href="https://mstdn.science/tags/Algae" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Algae</span></a> <a href="https://mstdn.science/tags/Microbes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Microbes</span></a> <a href="https://mstdn.science/tags/Evolution" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Evolution</span></a> <a href="https://mstdn.science/tags/Bacteria" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Bacteria</span></a> <a href="https://mstdn.science/tags/Archaea" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Archaea</span></a> <a href="https://mstdn.science/tags/Symbiosis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Symbiosis</span></a> <a href="https://mstdn.science/tags/Parasites" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Parasites</span></a> <a href="https://mstdn.science/tags/TreeOfLife" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TreeOfLife</span></a></p>
ISEP<p>New <a href="https://mstdn.science/tags/ISEPpapers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ISEPpapers</span></a>! Hijacking and integration of algal <a href="https://mstdn.science/tags/plastids" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>plastids</span></a> and <a href="https://mstdn.science/tags/mitochondria" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mitochondria</span></a> in a polar planktonic host: Ananya Kedige Rao et al. <a href="https://www.cell.com/current-biology/fulltext/S0960-9822(25)00392-6" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">cell.com/current-biology/fullt</span><span class="invisible">ext/S0960-9822(25)00392-6</span></a></p><p>"Hosts steal active plastids, mitochondria, and nuclei from the microalga <a href="https://mstdn.science/tags/Phaeocystis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Phaeocystis</span></a>... Stolen plastids increase in volume, and their photosynthetic activity is boosted... Stolen mitochondria transform into a network in close association with plastids"</p><p><a href="https://mstdn.science/tags/Microbes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Microbes</span></a> <a href="https://mstdn.science/tags/Algae" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Algae</span></a> <a href="https://mstdn.science/tags/Protists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Protists</span></a> <a href="https://mstdn.science/tags/Symbiosis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Symbiosis</span></a> <a href="https://mstdn.science/tags/Organelles" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Organelles</span></a> <a href="https://mstdn.science/tags/Plankton" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Plankton</span></a></p>
naturepoker<p>Wonderful discovery for <a href="https://genomic.social/tags/protists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>protists</span></a> <a href="https://genomic.social/tags/independentresearch" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>independentresearch</span></a> <a href="https://genomic.social/tags/microscopy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>microscopy</span></a> <a href="https://genomic.social/tags/microbiology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>microbiology</span></a> folks. Check out a new zine called "Amoeba Discovery": </p><p><a href="https://stefanluketa.com/amoeba-discovery/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">stefanluketa.com/amoeba-discov</span><span class="invisible">ery/</span></a></p><p>I never thought very much about protists/amoebas, and reading this volume was a fascinating introduction to what seems to be an understudied field. </p><p>Now I'm wondering how I might isolate and sequence some interesting samples!</p><p><span class="h-card" translate="no"><a href="https://genomic.social/@foaylward" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>foaylward</span></a></span></p>
Frank Aylward<p>My at-home algal cultivation hobby is going well. I am surprised thst soil samples are the best for growing new green algae - more so than pond water. </p><p><a href="https://genomic.social/tags/algae" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algae</span></a> <a href="https://genomic.social/tags/protists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>protists</span></a> <a href="https://genomic.social/tags/microbiology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>microbiology</span></a></p>
Lukas VFN 🇪🇺<p>Pink snow tints the edges of Antarctica <a href="https://english.elpais.com/science-tech/2025-03-24/pink-snow-tints-the-edges-of-antarctica.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">english.elpais.com/science-tec</span><span class="invisible">h/2025-03-24/pink-snow-tints-the-edges-of-antarctica.html</span></a></p><p>"The <a href="https://scholar.social/tags/algae" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algae</span></a> that covers Mount Reina Sofía in patches is Sanguina nivaloides, a species first described in 2019. The meaning of its scientific name in Latin is eloquent: blood in the snow. Each creature has a single cell, about 20 thousandths of a millimeter in size, with a molecule inside that gives it its characteristic red color: <a href="https://scholar.social/tags/astaxanthin" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>astaxanthin</span></a>... the same pigment that produces the color of salmon"</p><p><a href="https://scholar.social/tags/Antarctica" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Antarctica</span></a> <a href="https://scholar.social/tags/Protists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Protists</span></a> <a href="https://scholar.social/tags/Microbes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Microbes</span></a></p>
Lukas VFN 🇪🇺<p>Ancient marine organism's dual-layer structure reveals both past and present ocean environments <a href="https://phys.org/news/2025-02-ancient-marine-dual-layer-reveals.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">phys.org/news/2025-02-ancient-</span><span class="invisible">marine-dual-layer-reveals.html</span></a></p><p>A cosmopolitan calcifying benthic <a href="https://scholar.social/tags/foraminifera" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>foraminifera</span></a> in agglutinated disguise as a geochemical recorder of coastal environments <a href="https://www.pnas.org/doi/10.1073/pnas.2413054122" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">pnas.org/doi/10.1073/pnas.2413</span><span class="invisible">054122</span></a> </p><p>"This species has a remarkable hidden feature—an inner shell made of calcium carbonate beneath its outer layer of gathered particles... [this] made them an excellent recorder of environmental conditions."</p><p><a href="https://scholar.social/tags/Protists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Protists</span></a> <a href="https://scholar.social/tags/Microbes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Microbes</span></a></p>
Lukas VFN 🇪🇺<p>New research on <a href="https://scholar.social/tags/protists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>protists</span></a> sheds light on <a href="https://scholar.social/tags/DeepSea" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DeepSea</span></a> energy sources <a href="https://www.whoi.edu/press-room/news-release/foraminifer/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">whoi.edu/press-room/news-relea</span><span class="invisible">se/foraminifer/</span></a></p><p>Array of metabolic pathways in kleptoplastidic <a href="https://scholar.social/tags/foraminifera" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>foraminifera</span></a> supports <a href="https://scholar.social/tags/chemoautotrophy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>chemoautotrophy</span></a> in dark, euxinic seafloor sediments <a href="https://academic.oup.com/ismej/article/19/1/wrae248/7923457" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">academic.oup.com/ismej/article</span><span class="invisible">/19/1/wrae248/7923457</span></a> by Fatma Gomaa et al. </p><p>"This species takes up unrelated organism’s <a href="https://scholar.social/tags/chloroplasts" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>chloroplasts</span></a> — <a href="https://scholar.social/tags/organelles" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>organelles</span></a> that perform <a href="https://scholar.social/tags/photosynthesis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>photosynthesis</span></a>... We know <a href="https://scholar.social/tags/kleptoplasty" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>kleptoplasty</span></a> is happening here, but we needed to understand why this foraminifer is so successful in the dark, without oxygen"</p>
Lukas VFN 🇪🇺<p>Tiny microbe colonies communicate to coordinate their behavior <a href="https://www.uib.no/en/michaelsarscentre/175104/tiny-microbe-colonies-communicate-coordinate-their-behavior" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">uib.no/en/michaelsarscentre/17</span><span class="invisible">5104/tiny-microbe-colonies-communicate-coordinate-their-behavior</span></a></p><p>Electrical signaling and coordinated behavior in the closest relative of animals <a href="https://www.science.org/doi/10.1126/sciadv.adr7434" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">science.org/doi/10.1126/sciadv</span><span class="invisible">.adr7434</span></a></p><p>"A new study reveals evidence of electrical signaling and coordinated behavior in <a href="https://scholar.social/tags/choanoflagellates" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>choanoflagellates</span></a>, the closest living relatives of <a href="https://scholar.social/tags/animals" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animals</span></a>. This elaborate example of cell communication offers key insights into the early <a href="https://scholar.social/tags/evolution" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>evolution</span></a> of animal <a href="https://scholar.social/tags/multicellularity" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>multicellularity</span></a> and nervous systems."</p><p><a href="https://scholar.social/tags/Protists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Protists</span></a> <a href="https://scholar.social/tags/Microbes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Microbes</span></a></p>
ISEP<p>New <a href="https://mstdn.science/tags/ISEPpapers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ISEPpapers</span></a>! Reduced plastid <a href="https://mstdn.science/tags/genomes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>genomes</span></a> of colorless facultative pathogens Prototheca (<a href="https://mstdn.science/tags/Chlorophyta" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Chlorophyta</span></a>) &amp; retained for membrane transport genes <a href="https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-024-02089-4" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">bmcbiol.biomedcentral.com/arti</span><span class="invisible">cles/10.1186/s12915-024-02089-4</span></a> </p><p>"relatives of model <a href="https://mstdn.science/tags/algae" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algae</span></a> <a href="https://mstdn.science/tags/Chlorella" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Chlorella</span></a> include two secondarily non-photosynthetic genera – <a href="https://mstdn.science/tags/Helicosporidium" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Helicosporidium</span></a> (gut <a href="https://mstdn.science/tags/parasites" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>parasites</span></a> of <a href="https://mstdn.science/tags/insects" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>insects</span></a>) and <a href="https://mstdn.science/tags/Prototheca" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Prototheca</span></a>, which are predominantly free-living opportunistic <a href="https://mstdn.science/tags/pathogens" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pathogens</span></a> of diverse vertebrates, including humans"</p><p><a href="https://mstdn.science/tags/Protists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Protists</span></a> <a href="https://mstdn.science/tags/Microbes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Microbes</span></a> <a href="https://mstdn.science/tags/Plastids" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Plastids</span></a> <a href="https://mstdn.science/tags/Genomics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Genomics</span></a> <a href="https://mstdn.science/tags/Evolution" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Evolution</span></a> <a href="https://mstdn.science/tags/Biology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Biology</span></a></p>
ISEP<p>New <a href="https://mstdn.science/tags/ISEPpapers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ISEPpapers</span></a>! The nature of ‘jaws’: a new predatory representative of <a href="https://mstdn.science/tags/Provora" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Provora</span></a> and the ultrastructure of nibbling protists <a href="https://royalsocietypublishing.org/doi/10.1098/rsob.240158" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">royalsocietypublishing.org/doi</span><span class="invisible">/10.1098/rsob.240158</span></a> </p><p>"we identified four main microtubular roots... which support the strong feeding apparatus resembling jaws... We also describe a new species, Nibbleromonas piranha sp. nov., and highlight features of its feeding behaviour, which can be so aggressive as to result in cannibalism."</p><p><a href="https://mstdn.science/tags/Protists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Protists</span></a> <a href="https://mstdn.science/tags/Microbes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Microbes</span></a> <a href="https://mstdn.science/tags/Biology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Biology</span></a></p>
Frank Aylward<p>Giant virus encodes key piece of protein-making machinery of cellular life </p><p>"Viruses are integral to the functioning of ocean ecosystems, influencing biological productivity, shifting community interactions, and driving evolutionary change,"&nbsp;</p><p><a href="https://phys.org/news/2024-12-giant-virus-encodes-key-piece.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">phys.org/news/2024-12-giant-vi</span><span class="invisible">rus-encodes-key-piece.html</span></a></p><p><a href="https://genomic.social/tags/viruses" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>viruses</span></a> <a href="https://genomic.social/tags/microbiology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>microbiology</span></a> <a href="https://genomic.social/tags/GiantViruses" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GiantViruses</span></a> <a href="https://genomic.social/tags/protists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>protists</span></a></p>
Lukas VFN 🇪🇺<p><a href="https://scholar.social/tags/Phytochromes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Phytochromes</span></a>: The 'eyes' that enable <a href="https://scholar.social/tags/microalgae" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>microalgae</span></a> to find their way in aquatic depths <a href="https://phys.org/news/2024-12-phytochromes-eyes-enable-microalgae-aquatic.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">phys.org/news/2024-12-phytochr</span><span class="invisible">omes-eyes-enable-microalgae-aquatic.html</span></a></p><p><a href="https://scholar.social/tags/Diatom" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Diatom</span></a> phytochromes integrate the underwater light spectrum to sense depth: Carole Duchêne et al. <a href="https://www.nature.com/articles/s41586-024-08301-3" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">nature.com/articles/s41586-024</span><span class="invisible">-08301-3</span></a></p><p>"These photoreceptors enable them to detect changes in the light spectrum in the water column, thereby providing information regarding their vertical position within it."</p><p><a href="https://scholar.social/tags/Protists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Protists</span></a> <a href="https://scholar.social/tags/Algae" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Algae</span></a> <a href="https://scholar.social/tags/Diatoms" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Diatoms</span></a> <a href="https://scholar.social/tags/Microbes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Microbes</span></a> <a href="https://scholar.social/tags/Plankton" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Plankton</span></a> <a href="https://scholar.social/tags/Biology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Biology</span></a> <a href="https://scholar.social/tags/Phytoplankton" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Phytoplankton</span></a></p>
Lukas VFN 🇪🇺<p>This <a href="https://scholar.social/tags/amoeba" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>amoeba</span></a> eats prey like <a href="https://scholar.social/tags/owls" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>owls</span></a> do <a href="https://www.sciencenews.org/article/amoeba-eats-removes-shell" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">sciencenews.org/article/amoeba</span><span class="invisible">-eats-removes-shell</span></a> </p><p>The vampyrellid amoeba <a href="https://scholar.social/tags/Strigomyxa" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Strigomyxa</span></a> ruptor gen. et sp. nov. and its remarkable strategy to acquire algal cell contents <a href="https://onlinelibrary.wiley.com/doi/10.1002/ece3.70191" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">onlinelibrary.wiley.com/doi/10</span><span class="invisible">.1002/ece3.70191</span></a> </p><p>"The microscopic predator engulfs <a href="https://scholar.social/tags/algae" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algae</span></a>, drains the cells and spits out the shell"</p><p><a href="https://scholar.social/tags/Protists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Protists</span></a> <a href="https://scholar.social/tags/Amoebae" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Amoebae</span></a> <a href="https://scholar.social/tags/Microbes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Microbes</span></a> <a href="https://scholar.social/tags/Biology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Biology</span></a></p>
Lukas VFN 🇪🇺<p>Research reveals even single-cell organisms exhibit habituation, a simple form of learning <a href="https://phys.org/news/2024-11-reveals-cell-habituation-simple.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">phys.org/news/2024-11-reveals-</span><span class="invisible">cell-habituation-simple.html</span></a></p><p>Biochemically plausible models of habituation for single-cell learning: Lina Eckert et al. <a href="https://www.cell.com/current-biology/fulltext/S0960-9822(24)01430-1" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">cell.com/current-biology/fullt</span><span class="invisible">ext/S0960-9822(24)01430-1</span></a></p><p>"Earlier work found that a single-cell ciliate showed avoidance behavior, not unlike the actions observed in animals that encounter unpleasant stimuli."</p><p><a href="https://scholar.social/tags/Protists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Protists</span></a> <a href="https://scholar.social/tags/Microbes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Microbes</span></a> <a href="https://scholar.social/tags/Ciliates" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Ciliates</span></a></p>
Lukas VFN 🇪🇺<p>It's time to consider the Arcellinida shell as a weapon <a href="https://www.isep-protists.com/post/arcellinida-shell-weapon" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">isep-protists.com/post/arcelli</span><span class="invisible">nida-shell-weapon</span></a> </p><p>"why is there such a large morphological diversity in shell-bearing <a href="https://scholar.social/tags/amoebae" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>amoebae</span></a> and what is the function of shells anyway? We knew for a long time that <a href="https://scholar.social/tags/Arcellinida" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Arcellinida</span></a> are masters of the <a href="https://scholar.social/tags/cytoskeleton" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cytoskeleton</span></a> as they use it to build their elaborate shells. It was unknown that they use both, the cytoskeleton and shell, in combination to function as small apex <a href="https://scholar.social/tags/predators" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>predators</span></a> in their systems."</p><p><a href="https://scholar.social/tags/Protists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Protists</span></a> <a href="https://scholar.social/tags/ISEPpapers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ISEPpapers</span></a> <a href="https://scholar.social/tags/Microbes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Microbes</span></a></p>
Lukas VFN 🇪🇺<p>Advanced genetic techniques and <a href="https://scholar.social/tags/microscopy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>microscopy</span></a> offer new insights into anaerobic ciliate and methanogen <a href="https://scholar.social/tags/symbiosis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>symbiosis</span></a> <a href="https://phys.org/news/2024-10-advanced-genetic-techniques-microscopy-insights.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">phys.org/news/2024-10-advanced</span><span class="invisible">-genetic-techniques-microscopy-insights.html</span></a> </p><p>Methanogenic <a href="https://scholar.social/tags/symbionts" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>symbionts</span></a> of anaerobic <a href="https://scholar.social/tags/ciliates" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ciliates</span></a> are host and habitat specific <a href="https://academic.oup.com/ismej/article/18/1/wrae164/7737421" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">academic.oup.com/ismej/article</span><span class="invisible">/18/1/wrae164/7737421</span></a> <a href="https://scholar.social/tags/ISEPpapers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ISEPpapers</span></a> by <span class="h-card" translate="no"><a href="https://ecoevo.social/@joro" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>joro</span></a></span> </p><p>"This study provides a clearer understanding of how anaerobic ciliates have evolved a mix transmission mode to both maintain and replace their symbionts over time"</p><p><a href="https://scholar.social/tags/microbes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>microbes</span></a> <a href="https://scholar.social/tags/protists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>protists</span></a> <a href="https://scholar.social/tags/bacteria" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bacteria</span></a> <a href="https://scholar.social/tags/archaea" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>archaea</span></a> <a href="https://scholar.social/tags/methanogenesis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>methanogenesis</span></a> <a href="https://scholar.social/tags/biology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>biology</span></a></p>
Lukas VFN 🇪🇺<p>Scientists discover more <a href="https://scholar.social/tags/mitochondria" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mitochondria</span></a>-like <a href="https://scholar.social/tags/symbionts" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>symbionts</span></a> with surprising metabolic capacities <a href="https://phys.org/news/2024-12-scientists-mitochondria-symbionts-metabolic-capacities.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">phys.org/news/2024-12-scientis</span><span class="invisible">ts-mitochondria-symbionts-metabolic-capacities.html</span></a></p><p>Genetic potential for aerobic respiration and <a href="https://scholar.social/tags/denitrification" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>denitrification</span></a> in globally distributed respiratory <a href="https://scholar.social/tags/endosymbionts" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>endosymbionts</span></a> <a href="https://www.nature.com/articles/s41467-024-54047-x" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">nature.com/articles/s41467-024</span><span class="invisible">-54047-x</span></a></p><p>"They found a unique <a href="https://scholar.social/tags/bacterium" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bacterium</span></a> that lives inside a ciliate (<a href="https://scholar.social/tags/protists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>protists</span></a>) and provides it with energy... reminiscent of <a href="https://scholar.social/tags/mitochondria" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mitochondria</span></a>, with the key difference that the <a href="https://scholar.social/tags/endosymbiont" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>endosymbiont</span></a> derives energy from the respiration of nitrate, not oxygen."</p>