lingo.lol is one of the many independent Mastodon servers you can use to participate in the fediverse.
A place for linguists, philologists, and other lovers of languages.

Server stats:

63
active users

#mathematics

23 posts18 participants1 post today
Paysages Mathématiques<p>Theorem of the Day (May 18, 2025) : Ore’s Theorem in Graph Theory<br>Source : Theorem of the Day / Robin Whitty<br>pdf : <a href="https://www.theoremoftheday.org/CombinatorialTheory/Ore/TotDOre.pdf" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">theoremoftheday.org/Combinator</span><span class="invisible">ialTheory/Ore/TotDOre.pdf</span></a><br>notes : <a href="https://www.theoremoftheday.org/Resources/TheoremNotes.htm#230" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">theoremoftheday.org/Resources/</span><span class="invisible">TheoremNotes.htm#230</span></a> </p><p><a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>theorem</span></a> <span class="h-card" translate="no"><a href="https://mathstodon.xyz/@Theoremoftheday" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>Theoremoftheday</span></a></span></p>
vruz<p>I forgot to acknowledge last November marked 10 years since the passing of Alexander Grothendieck, who was not just another mathematician.</p><p>Perspectives abound<br><a href="https://en.wikipedia.org/wiki/Alexander_Grothendieck" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">en.wikipedia.org/wiki/Alexande</span><span class="invisible">r_Grothendieck</span></a></p><p>The Lives of Alexander Grothendieck<br><a href="https://archive.ph/anqKz" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">archive.ph/anqKz</span><span class="invisible"></span></a></p><p>The Anarchist Abstractionist<br><a href="https://www.cantorsparadise.org/the-anarchist-abstractionist-who-was-alexander-grothendieck-cc396083d94e/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">cantorsparadise.org/the-anarch</span><span class="invisible">ist-abstractionist-who-was-alexander-grothendieck-cc396083d94e/</span></a></p><p>As If Summoned From The Void (PDF)<br><a href="https://www.ams.org/notices/200410/fea-grothendieck-part2.pdf" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">ams.org/notices/200410/fea-gro</span><span class="invisible">thendieck-part2.pdf</span></a></p><p><a href="https://mstdn.social/tags/grothendieck" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>grothendieck</span></a> <a href="https://mstdn.social/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://mstdn.social/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a></p>
Bibliolater 📚 📜 🖋<p>📖 **The algebra of Jackson Pollock**</p><p>“_If you thought that maths and art don’t mix, Marcus du Sautoy’s invigorating study will convince you otherwise_”</p><p>🔗 <a href="https://observer.co.uk/culture/books/article/the-algebra-of-jackson-pollock" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">observer.co.uk/culture/books/a</span><span class="invisible">rticle/the-algebra-of-jackson-pollock</span></a>. </p><p><a href="https://qoto.org/tags/Nonfiction" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Nonfiction</span></a> <a href="https://qoto.org/tags/Book" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Book</span></a> <a href="https://qoto.org/tags/Bookstodon" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Bookstodon</span></a> <a href="https://qoto.org/tags/Maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Maths</span></a> <a href="https://qoto.org/tags/Mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Mathematics</span></a> <a href="https://qoto.org/tags/Math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Math</span></a> <a href="https://qoto.org/tags/Arts" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Arts</span></a> <a href="https://qoto.org/tags/Culture" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Culture</span></a> <span class="h-card"><a href="https://a.gup.pe/u/bookstodon" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>bookstodon</span></a></span></p>
ƧƿѦςɛ♏ѦਹѤʞ<p>Do these patterns really have anything to do with primes?<br><a href="https://www.youtube.com/shorts/h2V3r7oBeMI" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">youtube.com/shorts/h2V3r7oBeMI</span><span class="invisible"></span></a><br><a href="https://mastodon.social/tags/3Blue1Brown" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>3Blue1Brown</span></a> <a href="https://mastodon.social/tags/GrantSanderson" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GrantSanderson</span></a> @3Blue1Brown<br><a href="https://mastodon.social/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://mastodon.social/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://mastodon.social/tags/education" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>education</span></a><br><a href="https://mastodon.social/tags/geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geometry</span></a> <a href="https://mastodon.social/tags/spiral" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>spiral</span></a> <a href="https://mastodon.social/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mastodon.social/tags/primes" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>primes</span></a><br><a href="https://mastodon.social/tags/math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>math</span></a></p>
Infrapink (he/his/him)<p>It's well known that, if the sum of digits in a number (in base ten) is an integer multiple of 3, then that number is also an integer multiple of 3.</p><p>I feel like this can be generalised: If the sum of digits of a number (in base ten) is an integer multiple of 3ⁿ, then the number is also an integer multiple of 3ⁿ.</p><p>Unfortunately I don't have a proof of this one.</p><p><a href="https://mastodon.ie/tags/Maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Maths</span></a> <a href="https://mastodon.ie/tags/Math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Math</span></a> <a href="https://mastodon.ie/tags/Mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Mathematics</span></a></p>
Infrapink (he/his/him)<p>You probably know that you can tell if a number is an integer multiple of 2 by the last digit; if it's a 2, then the number is even.</p><p>You might also know that the last two digits tell you if it's a multiple of 4, and the last three if it's a multiple of 8.</p><p>We can generalise this. A number is an integer multiple of 2ⁿ if the number formed by the last n digits is an integer multiple of 2ⁿ.</p><p><a href="https://mastodon.ie/tags/Maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Maths</span></a> <a href="https://mastodon.ie/tags/Math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Math</span></a> <a href="https://mastodon.ie/tags/Mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Mathematics</span></a></p>
ƧƿѦςɛ♏ѦਹѤʞ<p>Why weren't you taught the cubic formula?<br><a href="https://www.youtube.com/watch?v=N-KXStupwsc" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">youtube.com/watch?v=N-KXStupwsc</span><span class="invisible"></span></a><br><a href="https://mastodon.social/tags/Mathologer" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Mathologer</span></a> <a href="https://mastodon.social/tags/BurkardPolster" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>BurkardPolster</span></a> @Mathologer<br><a href="https://mastodon.social/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NumberTheory</span></a> <a href="https://mastodon.social/tags/algebra" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>algebra</span></a> <a href="https://mastodon.social/tags/geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geometry</span></a><br><a href="https://mastodon.social/tags/quadratic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>quadratic</span></a> <a href="https://mastodon.social/tags/cubic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cubic</span></a> <a href="https://mastodon.social/tags/polynomial" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>polynomial</span></a><br><a href="https://mastodon.social/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://mastodon.social/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://mastodon.social/tags/education" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>education</span></a><br><a href="https://mastodon.social/tags/math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>math</span></a></p>
clar fon<p>here's a question for the mathematically inclined: are there any good terms for ternary parity?</p><p><a href="https://toot.cat/tags/math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>math</span></a> <a href="https://toot.cat/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://toot.cat/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://toot.cat/tags/mathstodon" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathstodon</span></a></p>
Adam Gladstone<p>Not really an example of <a href="https://mastodon.social/tags/photography" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>photography</span></a> today. <a href="https://mastodon.social/tags/math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>math</span></a> is more like it:</p><p><a href="https://adam-gladstone.pixels.com/featured/mathematica-adam-gladstone.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">adam-gladstone.pixels.com/feat</span><span class="invisible">ured/mathematica-adam-gladstone.html</span></a></p><p><a href="https://mastodon.social/tags/mandelbrotset" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mandelbrotset</span></a> <a href="https://mastodon.social/tags/mandelbrot" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mandelbrot</span></a> <a href="https://mastodon.social/tags/buyintoart" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>buyintoart</span></a> <a href="https://mastodon.social/tags/ayearforart" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ayearforart</span></a> <a href="https://mastodon.social/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://mastodon.social/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a></p>
WilliamFaulkner<p>Most physics starts with forces and fields.<br>Stick Theory starts with… collapse.<br>It asks: what survives when everything breaks?</p><p>And yeah it measures “almost nothing.” Using geometry.</p><p>Measuring structure from collapse is Stick Theory’s way of saying; “Hey, that sure does look like a lot of nothing over there… can I measure it?”</p><p>1. <a href="https://zenodo.org/records/15420522" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">zenodo.org/records/15420522</span><span class="invisible"></span></a> - Stick Theory<br>2. <a href="https://zenodo.org/records/15421615" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">zenodo.org/records/15421615</span><span class="invisible"></span></a> - Stick Math</p><p><a href="https://sciences.social/tags/academia" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>academia</span></a> <a href="https://sciences.social/tags/physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>physics</span></a> <a href="https://sciences.social/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://sciences.social/tags/Science" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Science</span></a> <a href="https://sciences.social/tags/technology" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>technology</span></a><br>ORCID: [<a href="https://orcid.org/0009-0005-7767-3638" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">orcid.org/0009-0005-7767-3638</span><span class="invisible"></span></a>]</p>
Flipboard Science Desk<p>What do Sudoku, AI, Rubik’s cubes, clocks and molecules have in common? They can all be reimagined as algebraic equations.</p><p>From <span class="h-card" translate="no"><a href="https://newsie.social/@TheConversationUS" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>TheConversationUS</span></a></span>: "Algebra is more than alphabet soup – it’s the language of algorithms and relationships."</p><p><a href="https://flip.it/41r-jh" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">flip.it/41r-jh</span><span class="invisible"></span></a></p><p><a href="https://flipboard.social/tags/Algebra" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Algebra</span></a> <a href="https://flipboard.social/tags/Math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Math</span></a> <a href="https://flipboard.social/tags/Mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Mathematics</span></a> <a href="https://flipboard.social/tags/Science" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Science</span></a></p>
WilliamFaulkner<p>Just released a formal continuation of Stick Theory:<br>Recursive Collapse Mechanics</p><p>A mathematical model where collapse intensity, recursive memory, and structural identity define dimension—without assuming space.</p><p>Read the paper on Zenodo: <a href="https://zenodo.org/records/15421615" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">zenodo.org/records/15421615</span><span class="invisible"></span></a></p><p><a href="https://sciences.social/tags/StickTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>StickTheory</span></a> <a href="https://sciences.social/tags/Physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Physics</span></a> <a href="https://sciences.social/tags/Collapse" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Collapse</span></a> <a href="https://sciences.social/tags/Mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Mathematics</span></a> <a href="https://sciences.social/tags/RecursiveGeometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RecursiveGeometry</span></a> <a href="https://sciences.social/tags/OpenAccess" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OpenAccess</span></a> <a href="https://sciences.social/tags/Science" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Science</span></a></p>
WilliamFaulkner<p>Stick Theory is now a thesis!<br>A recursive model of collapse, memory, and dimensional emergence—built from structural principles, not spacetime assumptions.<br>44 pages, 26 sections.<br>DOI: <a href="https://zenodo.org/record/15420522" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">zenodo.org/record/15420522</span><span class="invisible"></span></a></p><p><a href="https://sciences.social/tags/TheoreticalPhysics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TheoreticalPhysics</span></a> <a href="https://sciences.social/tags/RecursiveStructures" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RecursiveStructures</span></a> <a href="https://sciences.social/tags/OpenScience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OpenScience</span></a> <a href="https://sciences.social/tags/StickTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>StickTheory</span></a> <a href="https://sciences.social/tags/Physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Physics</span></a> <a href="https://sciences.social/tags/Mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Mathematics</span></a></p>
ƧƿѦςɛ♏ѦਹѤʞ<p><a href="https://mastodon.social/tags/XKCD" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>XKCD</span></a> <a href="https://mastodon.social/tags/CollatzConjecture" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CollatzConjecture</span></a> <a href="https://mastodon.social/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://mastodon.social/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://mastodon.social/tags/BusyBeaver" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>BusyBeaver</span></a></p>
Rémi Eismann<p>2 ➡️ The prime numbers (A000040):</p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/javascript" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>javascript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/triangular" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>triangular</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/palindromes" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>palindromes</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/academia" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>academia</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>research</span></a></p>
Rémi Eismann<p>Generation of four sequences decomposed into weight × level + jump (log(weight), log(level), log(jump)) - three.js animation:<br>🧵</p><p>1 ➡️ The natural numbers (A000027):</p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/javascript" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>javascript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/triangular" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>triangular</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/palindromes" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>palindromes</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/academia" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>academia</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>research</span></a></p>
Dani Laura (they/she/he)<p><a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TilingTuesday</span></a> <a href="https://mathstodon.xyz/tags/tiling" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tiling</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/Mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Mathematics</span></a> <a href="https://mathstodon.xyz/tags/hexagonal" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>hexagonal</span></a></p>
Rémi Eismann<p>Soon the animation for the 1000 sequences of my website/<br>Experimental for now:<br>Prime numbers ➡️ <a href="https://decompwlj.com/exp-code/code-anim-prime.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/exp-code/code-an</span><span class="invisible">im-prime.html</span></a><br>Natural numbers ➡️ <a href="https://decompwlj.com/exp-code/code-anim-natural.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/exp-code/code-an</span><span class="invisible">im-natural.html</span></a></p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/javascript" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>javascript</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/triangular" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>triangular</span></a> <a href="https://mathstodon.xyz/tags/natural" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>natural</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/palindromes" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>palindromes</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/academia" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>academia</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>research</span></a></p>
Rémi Eismann<p>Generation of three sequences decomposed into weight × level + jump (log(weight), log(level), log(jump)) - three.js animation:<br>🧵<br>The natural numbers (A000027):</p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/javascript" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>javascript</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/triangular" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>triangular</span></a> <a href="https://mathstodon.xyz/tags/natural" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>natural</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/palindromes" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>palindromes</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/academia" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>academia</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>research</span></a></p>
Ana Tudor 🐯<p>I turn 13 on <span class="h-card" translate="no"><a href="https://fosstodon.org/@codepen" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>codepen</span></a></span> in June, so here are my 13 most hearted demos:</p><p>1️⃣ 1092 ♥️ <a href="https://mastodon.social/tags/CSS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CSS</span></a> infinite <a href="https://mastodon.social/tags/scroll" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>scroll</span></a> gallery <a href="https://codepen.io/thebabydino/pen/XJrYqGb" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">codepen.io/thebabydino/pen/XJr</span><span class="invisible">YqGb</span></a> - my only demo to ever get to 1K ♥️ without being in most hearted of the year first</p><p>mostly CSS scroll-driven animations + tiniest bit of JS (~200 bytes for infinity part)</p><p><a href="https://mastodon.social/tags/cssVariables" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cssVariables</span></a> <a href="https://mastodon.social/tags/cssTransforms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cssTransforms</span></a> <a href="https://mastodon.social/tags/coding" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>coding</span></a> <a href="https://mastodon.social/tags/code" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>code</span></a> <a href="https://mastodon.social/tags/frontend" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>frontend</span></a> <a href="https://mastodon.social/tags/cssTransform" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cssTransform</span></a> <a href="https://mastodon.social/tags/3D" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>3D</span></a> <a href="https://mastodon.social/tags/web" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>web</span></a> <a href="https://mastodon.social/tags/webDev" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>webDev</span></a> <a href="https://mastodon.social/tags/webDevelopment" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>webDevelopment</span></a> <a href="https://mastodon.social/tags/dev" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>dev</span></a> <a href="https://mastodon.social/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://mastodon.social/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://mastodon.social/tags/geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geometry</span></a> <a href="https://mastodon.social/tags/filter" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>filter</span></a></p>