lingo.lol is one of the many independent Mastodon servers you can use to participate in the fediverse.
A place for linguists, philologists, and other lovers of languages.

Server stats:

69
active users

#mathart

5 posts5 participants0 posts today
foldworks<p>Carved stone screen, Agra, India, 19th century, copied from earlier models, Victoria and Albert Museum, London</p><p><a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/tiling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tiling</span></a> <a href="https://mathstodon.xyz/tags/design" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>design</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/photography" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>photography</span></a> <a href="https://mathstodon.xyz/tags/architecture" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>architecture</span></a></p>
n-gons<p>A 17x17 rhombus grid for <a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a></p><p><a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/tiling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tiling</span></a> <a href="https://mathstodon.xyz/tags/grid" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>grid</span></a> <a href="https://mathstodon.xyz/tags/squares" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>squares</span></a> <a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathart</span></a></p>
Andrew D. Hwang<p>The pieces pictured are all still available. Longer-term I anticipate carrying only selected designs in silver.</p><p><a href="https://www.diffgeom.com/product-category/jewelry/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">diffgeom.com/product-category/</span><span class="invisible">jewelry/</span></a></p><p><a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/Jewelry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Jewelry</span></a> <a href="https://mathstodon.xyz/tags/3dPrinting" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3dPrinting</span></a></p>

These artworks are based on a generalization of Lucas sequences for complex numbers, defined as:
Z(0) = 1
Z(1) = 1 or i
Z(n) = shrink( e^(iθ)·Z(n-1) + Z(n-2) )

Where shrink() is a function which decreases a complex number into the two-unit square or the unit circle centered at the origin. In these works I use three different versions, based on taking out the integer part of the real and imaginary parts (or the integer part minus 1), or of the modulus of the number in polar form.

Figure 1 depicts the 128 values walk using θ = π/5 and Z(1) = i, and the shrinking function which takes out the integer part of the real and imaginary parts.

In the three artworks that follow, the lines connecting successive values toggle between being drawn or not. See the alt text for more information related to the artworks.
#mathart #math #algorithmicArt #AbstractArt

Replied in thread

@ark_brut A bit beyond my current skills, so I looked for something much simpler: youtube.com/shorts/g0-eD9c5uog. I used four lolly sticks and two rubber bands lying around the kitchen.

The only tricky part was cutting the notches with a craft knife and a self-healing mat.

I might try other tensegrity structures, but some need holes like the bed slat structure which is a step up in terms of equipment and skills.